Exercice de test : factorisation par identité remarquable

- 1. Citer les trois identités remarquables.
- 2. Résoudre les équations suivantes :
 - a. $4x^2-12x+9=0$
 - b. $64-100x^2=0$
 - c. $25x^2+70x+49=0$

Correction

$$a^2+2ab+b^2=(a+b)^2$$

- 1. Les trois identités remarquables sont $a^2-2ab+b^2=(a-b)^2$ $a^2-b^2=(a+b)(a-b)$
- **2. a.** Résoudre $4x^2 12x + 9 = 0$

On factorise: $4x^2-12x+9=(2x)^2-2\times 2x\times 3+(3)^2=(2x-3)^2$

Il faut donc résoudre l'équation $(2x-3)^2=0$

c'est-à-dire l'équation produit $(2x-3) \times (2x-3) = 0$

soit
$$2x - 3 = 0$$
 $2x - 3 = 0$
 $2x = 3$ soit $x = \frac{3}{2}$ $x = \frac{3}{2}$

On a une solution double $x = \frac{3}{2}$

b. Résoudre $64-100x^2=0$

On factorise: $64-100x^2=(8)^2-(10x)^2=(8-10x)(8+10x)$

Il faut donc résoudre l'équation produit $(8-10x) \times (8+10x) = 0$

soit
$$x = \frac{8-10x}{-10x} = \frac{0}{-8} = \frac{8+10x}{5} = \frac{0}{10} = \frac{8}{5}$$

 $x = \frac{-8}{-10} = \frac{8}{10} = \frac{4}{5}$, soit $x = \frac{-8}{10} = -\frac{4}{5}$

On a deux solutions $x = -\frac{4}{5}$ et $x = \frac{4}{5}$

c. Résoudre $25 x^2 + 70 x + 49 = 0$

On factorise: $25 x^2 + 70 x + 49 = (5 x)^2 + 2 \times 5 x \times 7 + (7)^2 = (5 x + 7)^2$

Il faut donc résoudre l'équation $(5x+7)^2=0$

c'est-à-dire l'équation produit $(5x+7) \times (5x+7) = 0$

soit
$$5x+7 = 0$$
 $5x+7 = 0$
 $5x = -7$ soit $x = -\frac{7}{5}$ $x = -\frac{7}{5}$

On a une solution double $x = -\frac{7}{5}$