Carrés et racines carrées

I- L'opération « carré »

1°) Approche numérique

Définition : le carré d'un nombre est le résultat du produit de ce nombre par luimême. Pour la notation, on utilisera le symbole 2.

Exemples:

 $5 \times 5 = 25$ donc 25 est le carré de 5. On note $5^2 = 5 \times 5 = 25$ $3.1 \times 3.1 = 9.61$ donc 9.61 est le carré de 3.1. On note $3.1^2 = 3.1 \times 3.1 = 9.61$ $(-3) \times (-3) = +9$ donc 9 est le carré de -3. On note $(-3)^2 = (-3) \times (-3) = 9$ a x a est le carré du nombre a. On note a = a x a

→ Exercices 1 et 2 page 277

Remarque: un carré est toujours un nombre positif.

Définition : un carré parfait est nombre qui est le carré d'un nombre entier. Les auinze plus petits sont à connaître par cœur :

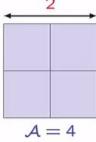
quinte pius pointe donn di continuiti o pair coccii		
$1 = 1 \times 1 = 1^2$	$36 = 6 \times 6 = 6^2$	$121 = 11 \times 11 = 11^{2}$
$4 = 2 \times 2 = 2^2$	$49 = 7 \times 7 = 7^2$	$144 = 12 \times 12 = 12^{2}$
$9 = 3 \times 3 = 3^2$	$64 = 8 \times 8 = 8^2$	$169 = 13 \times 13 = 13^{2}$
$16 = 4 \times 4 = 4^2$	$81 = 9 \times 9 = 9^2$	$196 = 14 \times 14 = 14^{\circ}$
$25 = 5 \times 5 = 5^{2}$	$100 = 10 \times 10 = 10^{2}$	$225 = 15 \times 15 = 15^{\circ}$

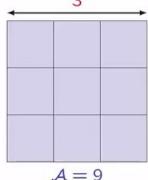
→ Exercice 3 page 276 (attention au numéro de page)

2°) Approche géométrique

On s'intéresse au rapport entre la longueur du côté d'un carré et la surface de ce

carré.





L'opération carré ² permet de connaître la surface d'un carré dont on connaît le côté.

$$2^2 = 2 \times 2 = 4$$

$$3^2 = 3 \times 3 = 9$$

II - L'opération « racine carrée »

La « racine carrée » est l'opération inverse de l'opération « carré ».

<u>Géométriquement</u>: je connais la surface d'un carré et je veux calculer la longueur de son côté.

Exemple : Si j'ai un carré contenant exactement 36 carreaux, alors son côté sera de 6 unités car 36 = 6×6 = 6^2 . On notera $\sqrt{36}$ =6

<u>Numériquement</u>: j'ai un nombre que je veux écrire comme le résultat de la multiplication d'un nombre par lui même.

Exemple : 400 = ... x ... il me faut compléter les trous avec le même nombre. Ce nombre, appelé racine carrée de 400, est 20 car 20 x 20 = 400. On écrira $\sqrt{400}$ = 20

Remarque : une racine carrée est toujours un nombre positif.

→ Exercices 3 page 277 et 2 page 276 (attention aux numéros de pages)

<u>Mathématiquement</u>: Si a est un nombre positif, sa racine carrée se note \sqrt{a} ce symbole \sqrt{a} s'appelle le radical.

Définition : \sqrt{a} est le nombre positif tel que $\sqrt{a} \times \sqrt{a} = a$

Remarque : Comme un carré est toujours un nombre positif, les nombres négatifs n'ont pas de racine carrée.

→ Exercices 4 et 5 page 277

Remarque: si a est un nombre positif, alors $(\sqrt{a})^2 = a$ et $(\sqrt{a^2}) = a$ \rightarrow Exercices 6 et 7 page 277

(voir aussi https://www.youtube.com/watch?v=odhOXPfppiA l'explication en vidéo)

Pour aller plus loin:

Exercice: sur tableur, construire le « carré des tables de multiplications » de 1 à 15.